
“Problems that used to take us several days or even weeks to 
track down, we are able to routinely find and fix in a few hours 
with Insure++.” 

—Valued Customer

TRY PARASOFT 
INSURE++
Schedule a demo to learn how 
Parasoft Insure++ can find and 
help your team handle memory 
management issues.

FIND REAL BUGS WITH RUNTIME MEMORY 
ANALYSIS & ERROR DETECTION
Errors such as memory corruption, memory leaks, access outside of array bounds, 
invalid pointers, and the like, often go undetected during normal testing, only to 
result in application crashes or security exploits in the field. Insure++ will help you 
find and eliminate defects quickly and easily.

Insure++ is a runtime memory analysis and error detection tool for C and C++ that 
automatically identifies a variety of difficult-to-find programming, memory access, 
and security errors, along with potential defects and inefficiencies in memory usage.

During testing, Insure++ checks all types of memory references, including those to 
static (global), stack, and shared memory — both in the user’s code and in third-
party libraries.

INSURE ++ MODES OF USE
Insure++’s memory analysis capabilities in are based on patented source 
instrumentation algorithms. Source code instrumentation enables Insure++ to 
detect more error types than other memory error detection technologies, and 
also provides complete information indicating the root causes of the errors found, 
using a full database of program elements and memory structures. There are two 
ways to use Insure++ for memory analysis and error detection:

Parasoft Insure++
THE ULTIMATE MEMORY DEBUGGER FOR C & C++

ELIMINATE DEFECTS 
AND MEMORY ISSUES
 » Find memory errors before they 

become runtime problems.

 » Find common errors during 64-bit 
porting.

 » Optimize memory usage of 
applications.

 » Reduce development and support 
cost.

SOURCE INSTRUMENTATION MODE

The first and most detailed analysis 
is achieved with full source code 
instrumentation. This requires that 
application sources be compiled and 
linked with Insure++, which generates 
its own instrumented files that are 
passed to the actual compiler.

LINK MODE

Without source code instrumentation, 
by linking your application object code 
and libraries with Insure++, the tool can 
“spy” on the kernel/application program 
interface to detect errors such as leaks, 
bad memory references, standard API 
usage errors, and so on.

https://www.parasoft.com/products/parasoft-insure/


Parasoft Insure++

MEMORY DEBUGGING WITH PARASOFT 
INSURE++
ParaTarget Insure++’s patented instrumentation to pinpoint real memory issues 
and get immediate visibility at runtime. Identify memory issues both within your 
codebase and caused by external libraries, automatically tracking and monitoring all 
threads and processes within the application to quickly find algorithmic anomalies.

At compile time, use Insure++ to identify deviations from C/C++ standards that 
may lead to memory leaks or application instability.

TOTAL COVERAGE ANALYSIS (PARASOFT TCA®)
TCA analyzes and reports block code coverage and lets you get under the hood of your program to see which parts are 
actually testing and how often each block is executed.

 » Identify the blocks of instrumented code exercised during memory debugging.

 » Understand the relationships between memory defects and the code that was executed. 

 » See how many times a block of code has been executed to understand the impact of a memory defect on the overall 
stability of the application.

DYNAMIC MEMORY VISUALIZATION (PARASOFT INUSE®)
Insure++ visualizes how an application uses memory, providing a graphical view of all memory allocations over time with 
specific visibility into overall heap usage, block allocations, possible outstanding leaks, and so on.

While your application is running, get real-time visibility into:

 » How your application is utilizing memory.

 » Memory problems as they appear, and the impact of those problems on memory.

 » Details of heap usage, block allocations, free memory, and frequency of memory access over time.

 » Comparisons with historical data to view the outcomes of tuning your application’s use of memory.

RUNTIME MEMORY DEBUGGING

Errors detected include:

 » Corrupted heap and stack memory

 » Use of uninitialized variables and 
objects

 » Array and string bounds errors on 
heap and stack

 » Use of dangling, NULL, and 
uninitialized pointers

 » All types of memory allocation and 
free errors or mismatches

 » All types of memory leaks

 » Type mismatches in global 
declarations, pointers, and function 
calls

COMPILE TIME ANALYSIS

Errors detected include:

 » Cast of pointer loses precision

 » Mismatch in format specification

 » Mismatch in argument type

 » Code is not evaluated, has no effect, 
or is unreachable

 » Undefined identifier

 » Variable declared, but never used

 » Returning pointer to local variable

 » Function returns inconsistent value

 » Unused variables

Parasoft Corporation 
www.parasoft.com 

101 E Huntington Drive  
Monrovia, CA 91016 USA 

Sales: 1-888-305-0041  
International Sales: +1-626-256-3680

SUPPORTED 
PLATFORMS 
MICROSOFT WINDOWS

 » Visual Studio  2012, 
2013, 2015, and 2017

 » Windows 7, 8, 8.1, 10

LINUX

 » GNU GCC 5.4.x - 8.x 
 » Ubuntu 14, 16 & 17 
 » Fedora 18, 24, 25, & 26
 » CentOS 7

http://www.parasoft.com

